Anti-dystrophin Antibodies and Their Applications in Western Blotting for Quantifying Dystrophin Rescue

Anti-dystrophin Antibodies and Their Applications in Western Blotting for Quantifying Dystrophin Rescue
Dystrophin, a crucial protein for maintaining muscle integrity, is severely deficient in Duchenne Muscular Dystrophy (DMD) patients. Quantifying dystrophin restoration following therapeutic interventions is essential for evaluating treatment efficacy. Western blotting, a widely used protein analysis technique, plays a pivotal role in this quantification, with anti-dystrophin antibodies being central to its success.   Anti-dystrophin antibodies are specifically designed to detect and bind dystrophin protein, making them indispensable for Western blot …
more

Increase in Full-Length Dystrophin by Exon Skipping in Duchenne Muscular Dystrophy Patients with Single Exon Duplications: An Open-label Study

Increase in Full-Length Dystrophin by Exon Skipping in Duchenne Muscular Dystrophy Patients with Single Exon Duplications: An Open-label Study
1. Introduction Duchenne Muscular Dystrophy (DMD) is a severe genetic disorder predominantly affecting boys, with an incidence of approximately 1 in 5,000 male births. It is caused by mutations in the DMD gene that lead to disrupted production of dystrophin, a protein essential for muscle stability. Exon skipping is a therapeutic strategy that restores the reading frame of the mutated gene to enable dystrophin production. This study focuses on applying …
more

Exon-Skipping in Duchenne Muscular Dystrophy

Exon-Skipping in Duchenne Muscular Dystrophy
Duchenne Muscular Dystrophy (DMD) is a severe genetic disorder caused by mutations in the dystrophin gene on the X chromosome. These mutations disrupt the production of the dystrophin protein, crucial for muscle stability and function. This review focuses on exon-skipping therapy, which uses genetic techniques to restore partial dystrophin production, converting the severe DMD phenotype to a milder Becker Muscular Dystrophy (BMD)-like condition. Exon-skipping therapy involves antisense oligonucleotides (AONs) that …
more

Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45–55 Skipping Accompanied by Rescue of Dystrophin Expression

Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45–55 Skipping Accompanied by Rescue of Dystrophin Expression
1. Background and Purpose: Antisense oligonucleotide (AO)-mediated exon skipping is a promising strategy for treating genetic disorders like Duchenne Muscular Dystrophy (DMD). This method alters dystrophin pre-mRNA splicing to create a shorter but functional protein, potentially converting severe DMD into a milder Becker Muscular Dystrophy (BMD) phenotype. The paper highlights the significance of skipping exons 45–55, a common mutation area that could help nearly half of DMD patients.   2. …
more

Golden Retriever Muscular Dystrophy (GRMD)

Golden Retriever Muscular Dystrophy (GRMD)
Golden Retriever Muscular Dystrophy (GRMD) is a genetic disorder in dogs that closely resembles Duchenne Muscular Dystrophy (DMD) in humans. It is caused by a mutation in the *dystrophin* gene, which leads to the absence or severe deficiency of dystrophin protein in muscle cells. Without dystrophin, muscle cells become damaged and progressively weaken, leading to the characteristic symptoms of the disease. GRMD has been extensively studied as a model for …
more

Recent Posts

Categories

I'd be delighted if you could explore the other sections of my website.

Biochemist Researcher . YouTuber . Medical Laboratory Tech

!I am Ali Nik Akhtar

Personal Website​​​​​​​

If you have any questions or would like to discuss further, please feel free to email me. I would be delighted to get to know you better.

Ready to start a collaboration...​​​​​​​

Contact Me

Nikakhtar422@gmail.com

All rights reserved. This website belongs to Ali Nik Akhtar.