Systemic delivery of an AAV9 exonskipping vector significantly improves or prevents features of Duchenne muscular dystrophy in the Dup2 mouse

Systemic delivery of an AAV9 exonskipping vector significantly improves or prevents features of Duchenne muscular dystrophy in the Dup2 mouse
  Background: Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by mutations in the DMD gene. These mutations disrupt the dystrophin protein, essential for muscle function. Current treatments, like exon-skipping oligonucleotides, have limitations due to their short lifespan and need for frequent administration.   Objective: This study explored the use of a self-complementary adeno-associated virus (scAAV9) vector expressing U7 small nuclear RNA (snRNA) to target exon 2 of …
more

Dystrophin Restoration after Adeno-Associated Virus U7eMediated Dmd Exon Skipping Is Modulated by Muscular Exercise in the Severe D2-Mdx Duchenne Muscular Dystrophy Murine Model

Dystrophin Restoration after Adeno-Associated Virus U7eMediated Dmd Exon Skipping Is Modulated by Muscular Exercise in the Severe D2-Mdx Duchenne Muscular Dystrophy Murine Model
  This study explores the impact of voluntary exercise on the effectiveness of a gene therapy approach for Duchenne muscular dystrophy (DMD) using the D2-mdx murine model. DMD is caused by mutations in the dystrophin gene, leading to muscle damage and impaired regeneration. The research uses adeno-associated virus (AAV)-mediated U7 snRNA to skip a mutation-containing exon and restore dystrophin production. D2-mdx mice were treated with AAV-U7 and allowed to run …
more

From Cryptic Toward Canonical Pre-mRNA Splicing in Pompe Disease: a Pipeline for the Development of Antisense Oligonucleotides

From Cryptic Toward Canonical Pre-mRNA Splicing in Pompe Disease: a Pipeline for the Development of Antisense Oligonucleotides
This study addresses the challenges of aberrant pre-mRNA splicing in Pompe disease, caused by pathogenic variants in the acid α-glucosidase (GAA) gene. These variants often lead to the use of cryptic splice sites, resulting in disrupted protein production. The research proposes a pipeline to identify these splicing defects and correct them using antisense oligonucleotides (AONs).   The team developed a splicing assay to detect aberrant splicing patterns in patient-derived fibroblasts. …
more

Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45–55 Skipping Accompanied by Rescue of Dystrophin Expression

Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45–55 Skipping Accompanied by Rescue of Dystrophin Expression
1. Background and Purpose: Antisense oligonucleotide (AO)-mediated exon skipping is a promising strategy for treating genetic disorders like Duchenne Muscular Dystrophy (DMD). This method alters dystrophin pre-mRNA splicing to create a shorter but functional protein, potentially converting severe DMD into a milder Becker Muscular Dystrophy (BMD) phenotype. The paper highlights the significance of skipping exons 45–55, a common mutation area that could help nearly half of DMD patients.   2. …
more

Recent Posts

Categories

I'd be delighted if you could explore the other sections of my website.

Biochemist Researcher . YouTuber . Medical Laboratory Tech

!I am Ali Nik Akhtar

Personal Website​​​​​​​

If you have any questions or would like to discuss further, please feel free to email me. I would be delighted to get to know you better.

Ready to start a collaboration...​​​​​​​

Contact Me

Nikakhtar422@gmail.com

All rights reserved. This website belongs to Ali Nik Akhtar.